
 
 
 
 

 

  
Abstract— In this paper, a new modelling technique is 

considered for the study of tuberculosis and its spread. The model 
serves as a means of controlling the spread of tuberculosis. The 
mathematical analysis of the model equations is carried out to 
investigate the transmission dynamics of the disease. Also, solutions 
on how to reduce the spread of the disease in the community is 
proposed, and some simulations are performed to determine the 
consequence of the effective contact rate for Tuberculosis infection. 
Three hypothetical cases are considered and it is discovered that as 
the effective contact rate increases, the contact rate also increases. 
Results are illustrated graphically with the aid of MATLAB 
mathematical software. 
 

Keywords— Tuberculosis, epidemic, modelling, DOTS, DFE, 
reproduction number.  

I. INTRODUCTION 
UBERCULOSIS (TB) is a  bacterial disease which attacks 
some part of the human body such as lungs, kidneys, 

bones, lymph nodes, and brain. This disease is caused by a 
known Mycobacterium tuberculosis, that looks like a rod-
shape bacterium. Some of the symptoms are  in the form of 
cough, chest pain, shortness of breath, loss of appetite, weight 
loss, fever, chills, and fatigue. 

 TB  majorly  can be communicated from person to person 
via droplets. When an infected person coughs, sneezes, or 
talks, saliva or mucus are released into the air, which can be 
inhaled by another person. 

The behaviour of precise mathematical models can be 
interpreted using mathematical methods and computer 
simulations. 

Several researchers have worked on the analysis and 
modelling of TB epidemic. Some of these research works are 
theoretical and [1-3] used the approach of mathematics in 
analyzing it.  

TB transmission model with Directly Observed Therapy 
Short-course (DOTS) was discussed in [1]. This model enables 
the identification and treatment of the people displaying signs 
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and uses standard incidence function for the infection rate. The 
research shows that in the absence of re-infection, the model 
has a globally asymptotic stable Disease free equilibrium 
(DFE) whenever 1dR < . A notable medical contribution in 
TB control was the introduction of antibiotics which resulted 
in significant decrease in mortality. As a consequence of this 
development, TB-infected people can be effectively treated 
using multiple drugs via the DOTS strategy. However, if not 
strictly complied to or administered wrongly, such therapy 
may lead to the evolution and development of multi-drug 
resistant TB (MDR-TB). A deterministic model for TB 
transmission dynamics, in the presence of DOTS is presented 
and rigorously analyzed.  

Similarly, in 2010 a mathematical model of tuberculosis 
epidemics [2] was used to study  the strengths and limitations 
of using homogeneous mixing and heterogeneous mixing 
epidemic models to explore the context of the transmission 
dynamics of tuberculosis.  

In [3], dealt with TB that  spread through one –strain and 
two strains models. They proved that if the basic reproduction 
ratio 1oR ≥ , then the DFE is globally asymptotically stable on 

the nonnegative orthant and if 1oR > an endemic equilibrium 
exists and is globally asymptotically stable. Olwaseun et al., 
[4] worked on the synergistic interaction between HIV and 
Tuberculosis using a deterministic model which brings in 
many of the essential biological and epidemiological features 
of the two diseases. 

An extensive review on the relevant literature review has 
revealed that while much research has been done on 
tuberculosis, adequate research on the spread of tuberculosis is 
yet to be done. Though TB is a disease with vaccines readily 
available, it is still a disease that claims lots of lives. Several 
people have worked on the mathematical modelling of the 
spread of tuberculosis and have come to different conclusions.  

II. FORMULATION OF THE MODEL 
Following [1, 2], we have the following TB model below 

which shall be used to study the transmission dynamics of 
tuberculosis.  
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=  

For the disease equilibrium, we will let: 

u dN S E T T F R= + + + + + .           (2)  
In summary, the TB transmission dynamics model is illustrated 
with a model flow chart in fig. (1). While the corresponding 
parameters  and variables are described in Table (1).  

 
 

Figure 1 Schematic diagram of model (1) 
 
The essential features of the model are that it: 
i. allows  disease transmission by individuals in the 

undetected ( )uT , detected ( )dT  and failed treatment F  
classes; 

ii. allows for the endogenous re-activation of vulnerable 
individuals ( at the rateκ ); and 

iii. allows for the possibility of treatment failure (at the 
rate τ). 

The model extends to the models in many of the 
aforementioned studies  [1, 5- 9] by including a separate 
compartment ( )F  for treated individuals who failed 
treatment. Furthermore, it extends the studies in [9, 10], which 
based on using mass action incidence and without exogenous 
re-infection (it also extends the work of Okuonghae [11] by 
using standard incidence). 

 
Table 1: Parameter values 

 

A. Parameters description 
Here, the parameters are described as follows: 

π : Rate of recruitment into the population setting 
M  : Per capita natural mortality rate 
β : Effective rate of contact for TB infection 

,d fη η : Modification parameters  for detection and failure 

respectively. 

fdu σσσ ,, : Recovery rate for individuals in ;uT ;dT  

and F classes. 

Parameter 
Nominal 

Value      
(per year) 

References 

π  
2000 

(per100000 
Population) 

[4] 

µ  
 

0.2 Assumed 

β  2,4,6 [12] 

ξ  0.001, 0.7, 
1.7 Assumed 

κ  0.5 [4] 

ω  0.75 [4] 

, ,u d fσ σ σ  0.3,0.3,0.3 Assumed 

uγ  0.2 [13, 14] 

τ  0.9 [12] 

,u dδ δ  0.3, 0.3,0.3 [4] 

fδ  0.3 Assumed 

,d fη η   
0.001,0.8 Assumed 
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ξ : Fraction of newly-infected individuals who are slow 
progressors. 

κ  : Endogenous factor rate for re-activation regarding 
exposed individuals. 

ω : Portion of exposed individuals who are being detected. 

uγ  : Discovered rate for un-detected infectious individuals. 
τ  : Treatment failure rate regarding detected infectious 

individuals. 
:,, fdu δδδ uT , dT , and F  classes induced mortality rate. 

 

III. ANALYSIS OF THE MODEL 

Theorem 1. [1]:Let D  be the set associated with the 
models ( (1) and (2)) be defined as : 

( ) 6, , , , ,  :u dD S E T T F R N πε
µ+

 
= ℜ ≤ 

 
. 

Then D  is positively-invariant and attracting with respect to 
the model (1) and (2). 

 
Proof: Let D  be a feasible region in biological form as 

earlier defined. Then, the addition of all the model dynamics 
yields the abtainment of the total population  rate of change. 

 

u u d d f
dN N T T F
dt

τ µ δ δ δ= − − − − . 

It follows that 0dN
dt

<  whenever N π
µ

> , furthermore, 

since  ,dN N
dt

π µ≤ −  it is clear that  ( )N t π
µ

≤ . Hence, 

all corresponding solutions of the defined model based on the 
initial conditions as containd in D  hold for all positive values 
of the time parameter. Thus, the region D  is attracting and 
positively invariant. In the region D , the model can be 
referred to as being epidemiologically and well-posed 
mathematically [16]. 

A. Disease-free Equilibrium Model (DFEM) 
This model posesses a Disease-free equilibrium (DFE), this 

can be obtained by equating the right-hand sides of the 
equations of the model to zero, given by 

 
* * * * * *

0 ( , , , , , ) 0,  0,  0,  0,  0 .
,u dS E T T F R πε

µ
 

= =  
 

a
 

The DFE stability termed 0ε , is analyzed by the application 
of  the (NG (next generation) method (see [17]). Thus, a 
matrix P  (non-negative matrix)  in relation to the new 
infection terms, and a  non-singular   M-matrix Q (of the 
remaining transforms) are given, respectively as: 

 
0

0 (1 ) (1 ) (1 ) 0
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0 0 0 0 0

d d
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 = − −
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where, 1 ,k κ µ= + 2 ,u u uk γ σ µ δ= + + +

3 d dk σ τ µ δ= + + +  and 4 ( )fk fσ µ δ= + + . The 

associated reproduction number, denoted by dR , is given by 
1( )dR PVρ −= , where ρ  denotes the spectral radius 

(dominant Eigen value in magnitude) of the next generation 
matrix 1PV − . 

It follows that 

( 1 2 3)
1 2 3 4

Rd A A A
k k k k

β
= + +  

with, 
1 (1 )[ 1 2( 3 ) 1 ]u uA K K K d K fζ η γ η τγ= − + + , 

2 (1 )[ 4( 3 ) ],u uA K K K d fξ ω η γ η τγ= − + +  

3 2( 4 ).A K K dK fξ ω η η τ= +  

B. Numerical Solution 
In this section, the model equations are solved numerically 
while three hypothetical cases are considered to investigate the 
effective rate of the transmission dynamics of tuberculosis. We 
make reference to Fig. 4.1 through Fig. 4.4. 
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Figure 4.1: Shows the simulation result at β = 2. 

Reference to Table 1. for values of other parameter 
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Figure 4.2: Shows the simulation result at 4β = . 

Reference to Table 1. for values of other parameter 
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Figure 4.3: Shows the simulation result at 6β = . 

Reference to Table 1. for values of other parameter 
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FIG 4.4 

Fig 4.4: Shows the simulation result at 2, 4,6β = . 
Reference to Table 1. for values of other parameter 
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I. DISCUSSION OF RESULTS 
A compartmental mathematical model to study the  

transmission dynamics of Tuberculosis was formulated. We 
also provided solution on how to  reduce the spread of the 
disease in the community using three hypothetical cases and a 
simulation was also done to get the report of the effective 
contact rate for the tuberculosis invectives. In Fig4.1, the 
increase of infected numer of individuals is shown and the 
number in total for new TB infected persons being a function 
of time based on the various value of 2β = . In Fig4.2, the 
increase of infected numer of individuals is shown and the 
number in total for new TB infected persons being a function 
of time based on the various value 4β = .  In Fig4.3, the 
increase of infected numer of individuals is shown and the 
number in total for new TB infected persons being a function 
of time based on the various value of 6β = . While Fig4.4 
describe the comparison between the three at beta 
equal 2, 4,and 6 . Reference to [18, 19] for modelling 
approaches. 
 

A. Concluding Remarks 
In conclusion, the model analysis showed that when there is 

no disease in the environment, the disease free equilibrium is 
stable. Also, as the effective contact rate increases ( )β , the 
total number of infective people also increases. That shows 
that once there is large contact with infected people the disease 
may take a while to die in the community. 
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